Экспозиция: диафрагма, выдержка и светочувствительность ISO


Параметры экспозиции снимка определяют, насколько тёмным или светлым окажется изображение, снятое вашей камерой. Хотите верьте, хотите нет, но параметров настройки всего три: диафрагма, выдержка и светочувствительность ISO («треугольник экспозиции»). Умелое их использование является существенной стороной выработки интуиции фотографа.

Что такое экспозиция

Получение правильной экспозиции более всего похоже на попытку собрать дождевую воду в ведро. Хотя сила дождя находится вне вашего контроля, тем не менее, вам подвластны три фактора: диаметр ведра, время, на которое ведро выставляется под дождь, и объём воды, который вы хотите получить. Всё, чего нужно добиться, — это набрать не слишком мало («недодержать») и не слишком много («передержать»). Ключевой момент в том, что возможно множество различных комбинаций размеров ведра, времени и количества воды. Например, одно и то же количество воды можно получить за меньшее время, если взять более широкое ведро, и наоборот, узкое ведро понадобится держать под дождём намного дольше.

В фотографии параметрами экспозиции являются диафрагма, выдержка и светочувствительность ISO, которые аналогичны диаметру ведра, времени и количеству воды, описанным выше. Далее, как дождь, так и естественный свет находятся вне контроля фотографа.

Треугольник экспозиции: диафрагма, выдержка и светочувствительность ISO

 

exposure1.pngКаждый из параметров влияет на экспозицию по-разному:
  • Диафрагма: управляет площадью, через которую свет попадает в камеру
  • Выдержка: управляет длительностью экспозиции
  • Число ISO: управляет чувствительностью сенсора вашей камеры к количеству света

Как следствие, можно использовать любую комбинацию этих трёх параметров для достижения одинаковой экспозиции, Важно, однако, знать, чем можно пожертвовать, поскольку каждый из параметров влияет также и на другие свойства изображения. Например, диафрагма влияет на глубину резкости, от выдержки зависит размытие движением, а светочувствительность ISO определяет величину визуального шума.

 

Далее мы рассмотрим, что означает каждый из параметров, как оценить его влияние, и как режимы съёмки камеры влияют на сочетание параметров.

Выдержка

Затвор камеры определяет, когда сенсор камеры открыт или закрыт для света, поступающего через объектив. Длительность выдержки определяет, на какой промежуток времени сенсор будет открыт. «Выдержка» и «длительность выдержки» обозначают одно и то же, и сокращение выдержки означает сокращение длительности выдержки.

В цифрах. Влияние выдержки на экспозицию, вероятно, оценить проще всего: оно соотносится с количеством света, поступающего в камеру, как 1:1. Если время выдержки удваивается, количество света, поступающего в камеру, также удваивается. Кроме того, для этого параметра возможен наиболее широкий диапазон значений:

Выдержка Использование
от 1 до 30 секунд и более Съемка ночью и при малом свете со штативом
от 2 до 1/2 секунды

Придание гладкости текущей воде

Ландшафтная съемка со штатива с большой  глубиной резкости

от 1/2 до 1/30 секунды

Получение размытия движением для фона движущегося объекта

Аккуратная съемка с рук со стабилизацией

от 1/50 до 1/100 секунды Типовая съемка с рук без существенного увеличения (зума)
от 1/250 до 1/500 секунды

Заморозка предмета в движении

Съемка с рук с существенным увеличением (телеобъективы)

от 1/1000 до 1/4000 секунды Заморозка очень быстрого и очень близкого движения

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Как это выглядит. Выдержка является мощным инструментом заморозки или акцентирования движения:

exposure2.jpg   exposure3.jpg

Первое фото снято с длинной выдержкой, второе - с короткой.

В творческой съёмке или для водопадов, например, размытие движением иной раз желательно, тогда как в большинстве других случаев его нужно исключить. Как следствие, обычно выдержку выбирают, исходя из значения, которое сможет обеспечить резкий снимок — либо для заморозки движения, либо для исключения сотрясения камеры при съёмке с рук.

Как узнать, какая выдержка обеспечит резкий снимок с рук? Используя цифровые камеры, проще всего поэкспериментировать и оценить результаты на экране камеры (при полном увеличении). Если при правильном выборе фокуса снимок получается смазанным, скорее всего, понадобится сократить выдержку, держать руки более стабильно или использовать штатив.

Диафрагма

Число диафрагмы камеры управляет площадью, через которую свет может проникать сквозь объектив. Величину диафрагмы обозначают в терминах f-ступеней, которые на первый взгляд не интуитивны, поскольку по мере того как f-ступень нарастает, площадь светопропускания убывает. На жаргоне фотографов, если кто-то говорит «закрыл» или «открыл» диафрагму, обычно он имеет в виду увеличение или уменьшение f-ступени, соответственно.

exposure4.png

В цифрах. Всякий раз, когда f-ступень уменьшается вдвое, площадь светопропуская увеличивается вчетверо. Это непосредственно следует из того, что площадь круга пропорциональна квадрату его радиуса, но большинство фотографов просто запоминают f-ступени, которые соответствуют каждому увеличению или уменьшению количества света вдвое:

Диафрагма Светопропускание Пример выдержки
f/22 1X 16 секунд
f/16 2X 8 секунд
f/11 4X 4 секунды

f/8.0

8X 2 секунды
f/5.6 16X 1 секунда
f/4.0 32X 1/2 секунды
f/2.8 64X 1/4 секунды
f/2.0 128X 1/8 секунды
f/1.4 256X 1/16 секунды

 

 

 

 Приведенные комбинации выдержки и диафрагмы обеспечивают одинаковую экспозицию.

 Примечание: доступные варианты выдержки не всегда позволяют увеличить или сократить  выдержку в точности вдвое, но приближения всегда настолько близки, что разница будет      пренебрежимо мала.

 

 

Вышеприведенные f-ступени являются стандартно доступными практически на любой камере, хотя большинство камер позволяют также и более гибкую настройку, например, f/3.2 и f/6.3. Диапазон значений может варьироваться в зависимости от камеры и объектива. Например, компактная камера может располагать диапазоном от f/2.8 до f/8.0, тогда как у цифровой зеркальной камеры с портретным объективом диапазон может составлять от f/1.4 до f/32. Узкий диапазон диафрагмы обычно не является большой проблемой, однако более широкий диапазон обеспечивает большую творческую гибкость.

Техническое примечание: для многих объективов светопропускание подвержено также влиянию передаточной эффективности, хотя она практически всегда является намного меньшим фактором, чем диафрагма. Кроме того, она находится вне пределов контроля фотографа. Разница в передаточной эффективности обычно более заметна при использовании сильного увеличения (зума). Например, объектив Canon 24-105 мм f/4L IS пропускает при диафрагме f/4 примерно на 10-40% меньше света, чем аналогичный объектив Canon 24-70 мм f/2.8L при диафрагме f/4 (в зависимости от фокусного расстояния).

Как это выглядит. Величина диафрагмы камеры определяет глубину резкости снимка (диапазон расстояний, в пределах которого объекты выглядят резкими). Снижение f-ступени означает уменьшение глубины резкости:

exposure5.jpg

 

 

Широкая диафрагма
f/2.0 — малая f-ступень
малая глубина резкости

 

 

exposure6.jpg

 

 

Закрытая диафрагма
f/16 — большая f-ступень
большая глубина резкости

 

 

Светочувствительность ISO

Число ISO определяет, насколько чувствительна камера к свету. Аналогично выдержке, число ISO соотносится с изменением экспозиции как 1:1. Однако, в отличие от диафрагмы и выдержки, минимальное число ISO желательно практически всегда, поскольку повышение числа ISO значительно увеличивает визуальный шум. Как следствие, число ISO повышают только в тех случаях, когда требуемые диафрагма и выдержка иначе недостижимы.

Общедоступны такие числа ISO, как 100, 200, 400 и 800, хотя многие камеры позволяют также меньшие и большие значения. Обычно приемлемо малый шум обеспечивают числа ISO в диапазоне 50-200, тогда как при использовании цифровых зеркальных камер зачастую приемлемым является диапазон 50-800 (или даже больше).



  • Сейчас на странице   0 пользователей

    Нет пользователей, просматривающих эту страницу

  • Похожие публикации

    • Автор: VladOr
      Установка экспозиции фотоаппарата
      Просматривая форумы и читая статьи по фотографии, можно встретить понятие экспозиции. Ее число зависит от потока света, попадающего на матрицу, пока открыт затвор. Таким образом, можно сделать вывод, что экспозиция напрямую зависит от значений выдержки и апертуры. Если на матрицу попадает мало света, то фотоснимок получается недоэкспонированным или темным.
      Во время работы в графических программах его хочется осветлить, но это грозит появлением шумов и искажением цвета в теневых участках. В противном случае при попадании на матрицу слишком большого количества света фотокадр получается очень светлым или переэкспонированным. Выбирая между темным снимком и пересвеченным, обратите внимание на то, что последний обработать будет сложнее. На пересвеченных снимках нет никакой информации о цвете, и программа станет считать его просто белым. Это значит, что детали будут потеряны.
      Установка экспозиции
      На работу экспозиции влияют следующие функции:
      Диафрагма. С помощью железных лепестков в объективе камеры можно управлять размером отверстия, которое они образуют. Чем меньше число диафрагмы, тем больше света будет попадать на матрицу камеры. Выдержка – это скорость работы шторок на камере. В это время затвор полностью либо частично открывается и пропускает свет на матрицу. Чем длиннее выдержка, тем больше света попадает через открытый затвор.
      ISO – это чувствительность матрицы к световому потоку. Меняя это число, можно снимать в темном помещении без вспышки (увеличить число ISO) и при ярком солнце, не боясь пересветить кадр (понизить ISO).   
      Более подробно, с техническими деталями, читайте на нашем сайте Главу учебника Экспозиция: диафрагма, выдержка и светочувствительность ISO 
       
       
      Начиная от мыльницы и заканчивая профессиональными зеркальными камерами, экспозицию устанавливают автоматически. Так как результат программной установки хороший, многие любители даже не задумываются о смене настроек. Иногда камера может ошибиться с настройками, и тогда фотограф начинает искать причину в настройках. В камере встроено три алгоритма замера экспозиции. Каждый параметр специально настраивался для разных ситуаций:
      Интегральный замер. Камера замеряет экспозицию по всему кадру. На основе среднего числа выставляется диафрагма и выдержка. Этот параметр подходит для фотосъемки, когда кадр равномерно освещен и не имеет каких-либо выделяющихся предметов. Если в кадре есть объект, намного отличающийся от фона, на снимке он будет темным или светлым. Частичный замер. При установке этого параметра камера использует данные только с центра снимка. При этом степень освещенности по краям кадра не принимается во внимание Для этого параметра идеально подойдет ситуация, когда главный объект более ярок по отношению к фону и его следует детально проработать. Центрально-взвешенный замер. Это смешанный тип замера. Камера берет данные со всей области кадра, но больше внимания уделяет центральной его части. Такой замер подходит для снимков, когда и фон и главный объект одинаково важны. Яркий пример – это портрет на природе. В этом случае важен как объект, так и фон, на котором его снимают.  
      Следует знать, что диапазон восприятия света матрицей ограничен. Бывают моменты, когда нельзя сразу проработать все участки кадра. Если разница между тенями и яркими объектами очень высока, то можно одновременно потерять цвета как в тени, так и на светлых участках. Если возникает такая ситуация, то можно использовать технологию HDR. Для этого камеру устанавливают на штатив и делают несколько кадров с разной экспозицией.
      Минимальное количество снимков для этой технологии – три кадра. В первом кадре снимают светлые участки, на втором кадре прорабатывают средние участки света, а третий кадр прорабатывает все детали в тенях. После того как сделано достаточное количество снимков, их объединяют в специальной программе. На обработанном снимке будут хорошо проработаны светлые участки и прорисованы все детали в тенях. После того как камера собрала все данные, она выставляет наиболее оптимальные показатели диафрагмы и выдержки.
      Корректировка экспозиции
      И автоматика может ошибиться. В результате снимок получается недостаточно светлый или немного темный. В такой ситуации придется поправить экспозамер самостоятельно. Для того, чтобы более точно выставить экспозицию, следует посмотреть на гистограмму снимка. В идеале она должна плавно заканчиваться с обоих краев схемы. Если она обрезается слева, то картинка недосвечена. Если на снимке пересвет, то гистограмма покажет обрез с правой стороны. Для сбалансирования графика следует воспользоваться корректировкой экспозиции и увеличить или уменьшить ее с помощью специальной кнопки или джойстика. Каждый щелчок будет менять экспозицию на 1/3 шага.
      На некоторых камерах установлен ввод постоянного числа экспозиции. Такие настройки очень удобны, когда известно, при каких условиях будет проходит съемка. Например, при ярком солнце точно известно, что программа неправильно определит экспозицию.
    • Автор: VladOr
      ГИПЕРФОКАЛЬНОЕ РАССТОЯНИЕ (ГФР)
      Фокусирование камеры на гиперфокальное расстояние обеспечивает максимальную резкость от половины этого расстояния и до бесконечности. Гиперфокальное расстояние особенно полезно в пейзажной (ландшафтной) фотографии, и понимание его сути поможет вам достичь максимальной резкости изображения путём получения максимальной глубины резкости — и таким образом наиболее детализированного финального отпечатка. Определение гиперфокального расстояния при данных фокусном расстоянии и диафрагме может оказаться непростой задачей; данная глава объясняет способ подсчёта ГФР и проясняет неточности.
      Передний фокус Задний фокус Передне-центральный фокус Обратите внимание, что только на правом снимке слова можно разобрать на всех расстояниях. Порой на расстоянии между ближайшим и самым удалённым предметами находится точка фокусировки, которая максимизирует общую резкость снимка, хотя она редко находится в середине расстояния. Гиперфокальное расстояние использует похожую концепцию, за исключением того, что его пределы начинаются в бесконечности и заканчиваются половиной дистанции фокусировки от камеры (и степень размытия, показанная выше, в него не входит).
       
      Где оно находится

      Какова оптимальная дистанция фокусировки? ГФР определяется как дистанция фокусировки, которая помещает максимальный возможный кружок нерезкости в бесконечности. Если дистанция фокусировки окажется хоть немножечко меньше, какой-нибудь из объектов дальнего плана окажется вне пределов ГРИП. Зайдя с другой стороны, если сфокусироваться на существенно удалённом объекте на горизонте (то есть, в бесконечности), ближайшая дистанция, которая попадает в глубину резкости, будет также гиперфокальной.
      Разумность применения

      Проблема ГФР в том, что объекты на дальнем плане (условной бесконечности) находятся на дальней границе глубины резкости. В результате они редко соответствуют тому, что определено как «приемлемая чёткость». Это серьёзно снижает детальность, учитывая, что большинство людей способно отличить 1/3 от размера, используемого большинством производителей объективов в качестве кружка нерезкости (см. «Что такое глубина резкости (ГРИП)»). Резкость на бесконечности особенно важна для тех ландшафтных фотографий, в которых фон играет большое значение.
      Резкость может быть полезным инструментом придания акцента, и потому бездумное применение гиперфокального расстояния может привести к пренебрежению областями снимка, которым резкость требовалась бы больше прочих. Мелкодетальный фон требует большей резкости, чем дымчатый (слева). Иначе, естественно мягкий передний план может зачастую позволить пожертвоватть мягкостью фона. Наконец, для некоторых изображений (таких как портреты) предпочтительна крайне небольшая глубина резкости, поскольку это позволяет отделить предмет съёмки от загруженного фона.
      При съёмке с рук часто приходится выбирать, чему придать максимальную резкость (в связи с ограничениями выдержки и диафрагмы). Такие ситуации требуют быстрой оценки, и ГФР не всегда является лучшим выбором.
       
      Метод подсчёта для ограниченных сцен
      Что если ваша композиция не продолжается до горизонта или исключает передний план? Несмотря на то, что ГФР здесь неприменимо, тем не менее, существует оптимальная дистанция фокусировки между передним планом и фоном.

      Многие используют метод приблизительного подсчёта, согласно которому нужно фокусироваться приблизительно на треть глубины снимаемой сцены, чтобы получить в ней максимальную резкость. Я призываю вас игнорировать этот совет, поскольку эта дистанция редко является оптимальной, в действительности позиция варьируется расстоянием до объекта, диафрагмой и фокусным расстоянием. Доля ГРИП перед фокальной плоскостью составляет примерно половину для близлежащих дистанций фокусировки и уменьшается до нуля в тот момент, когда дистанция фокусировки достигает ГФР. Правило трети справедливо лишь на определённой дистанции между этими двумя и нигде более. Убедитесь, что как ближняя, так и дальняя границы приемлемой чёткости покрывают снимаемую сцену.
      На практике
      Гиперфокальное расстояние хорошо применяется тогда, когда снимаемый предмет имеет значительную протяжённость назад, или если ни одна из областей изображения не требует большей чёткости, чем остальные. И даже в этом случае я советую также или использовать более строгое определение «приемлемо-чёткого», или фокусироваться несколько дальше, чтобы добавить резкости фону. Сфокусируйтесь вручную, используя маркеры дистанции на своём объективе или контролируя дистанцию на экране своей камеры, если она там указывается.
      Вы можете рассчитать «приемлемую чёткость», при которой размытие неощутимо при идеальном зрении для заданного печатного размера и дистанции просмотра. Это потребует использовать намного большее число диафрагмы или сфокусироваться на большую дистанцию, чтобы сохранить дальнюю границу ГРИП в бесконечности.
      Использование чрезмерно закрытой диафрагмы (большого числа f) может оказать противоположное действие, поскольку изображение начнёт размываться вследствие эффекта дифракции. Это размытие не зависит от положения объекта относительно глубины резкости, и потому максимальная резкость в фокальной плоскости может значительно снизиться. Для 35 мм и других похожих зеркальных камер эффект дифракции начинает сказываться после f/16. Для компактных цифровых камер беспокоиться обычно не о чем, поскольку они часто ограничены максимумом f/8.0 или менее.
    • Автор: VladOr
      Это тема для обсуждения главы учебника Что такое гиперфокальное расстояние.
      Пожалуйста, выскажите свое мнение или пожелания, задайте какие-либо вопросы.
       
      ,  
      Это тема для обсуждения главы учебника Что такое гиперфокальное расстояние.
      Пожалуйста, выскажите свое мнение или пожелания, задайте какие-либо вопросы.
       
    • Автор: VladOr
      Почему нельзя просто направить камеру на то, что видишь, и снять это? Этот вопрос кажется простым. Тем не менее, на него очень непросто дать ответ, и для этого потребуется изучить не только то, как камера записывает свет, но и то, как работают наши глаза и почему они работают именно так. Разбираясь в этом, можно открыть для себя что-то новое о нашем повседневном восприятии мира — помимо возможности стать лучшим фотографом.
      Общие сведения
      Наши глаза способны окидывать происходящее взглядом и динамически адаптироваться в зависимости от объекта, в то время как камера записывает одиночное неподвижное изображение. Многие считают это основным преимуществом глаз перед камерой. Например, наши глаза способны компенсировать дисбаланс яркости различных предметов, могут смотреть по сторонам, чтобы получить более широкий угол зрения, а также могут фокусироваться на объектах на различных расстояниях.
      Однако результат скорее подобен работе видеокамеры — не фото — поскольку наше сознание собирает несколько взглядов в один мысленный образ. Быстрый взгляд наших глаз был бы более честным сравнением, но в итоге уникальность нашей зрительной системы неопровержима, поскольку:
      То, что мы видим, является мысленной реконструкцией объектов на основе образов, предоставленных глазами — отнюдь не тем, что наши глаза в действительности увидели.
      Вызывает скепсис? У большинства — по крайней мере поначалу. Следующие примеры демонстрируют ситуации, в которых сознание можно заставить видеть нечто отличное от того, что видят глаза:
      ложный цвет полосы Maxa Ложный цвет: наведите курсор на край изображения и смотрите на центральный крест. Отсутствующий кружок будет перемещаться по кругу, и через некоторое время начнёт казаться зелёным — хотя в изображении зелёного цвета нет.
      Полосы Маха: наведите курсор на изображение. Каждая из полос покажется чуть темнее или светлее вблизи верхней или нижней границы, соответственно, — несмотря на то, что каждая из них окрашена равномерно.
      Впрочем, это не должно помешать нам сравнивать наши глаза и камеры! Во многих случаях честное сравнение всё же возможно, но только если мы принимаем во внимание и то, как мы видим, и то, как наше сознание обрабатывает эту информацию. Последующие разделы проведут границу между этими двумя, насколько возможно.
      Обзор различий
      Данная глава группирует сравнения по следующим визуальным категориям:
      Угол зрения Различимость деталей Чувствительность и динамический диапазон Всё это зачастую считается предметом максимальных отличий глаз от камеры, и как раз по этому поводу возникает больше всего разногласий. Есть и другие характеристики, такие как глубина резкости, объёмное зрение, баланс белого и цветовая гамма, но они не являются предметом данной главы.
      1. Угол зрения
      Для камер он определяется фокусным расстоянием объектива (а также размером сенсора). Например, фокусное расстояние телеобъектива больше, чем стандартного портретного, а потому угол зрения меньше:

      К сожалению, с нашими глазами не всё так просто. Хотя фокусное расстояние человеческого глаза приблизительно равно 22 мм, эта цифра может ввести в заблуждение, поскольку глазное дно закруглено, периферия нашего поля зрения значительно менее детальна, чем центр, и к тому же то, что мы видим, является комбинированным результатом работы двух глаз.
      Каждый глаз по отдельности имеет угол зрения порядка 120-200°, в зависимости от того, насколько строго объекты определены как "наблюдаемые". Соответственно, зона перекрытия двух глаз составляет порядка 130° — она практически настолько же широка, как у объектива типа "рыбий глаз". Однако по эволюционным причинам наше периферийное зрение пригодно только для обнаружения движения и крупных объектов. Более того, настолько широкий угол выглядел бы сильно искажённым и неестественным, будучи снятым камерой.
      левый глаз оба глаза правый глаз  
      Наш центральный угол зрения — порядка 40-60° — максимально влияет на наше восприятие. Субъективно это соотносится с углом, в пределах которого вы сможете вспомнить объекты, не двигая глазами. Кстати, это близко к углу зрения "нормального" объектива с фокусным расстоянием 50 мм (если совсем точно, то 43 мм) на камере полного кадра или 27 мм на камере с кроп-фактором 1.6. Хотя он и не воспроизводит полный угол нашего зрения, он хорошо передаёт то, как мы видим, достигая наилучшего компромисса между различными типами искажений:
      широкоугольный объектив
      (большая разница в размерах) телеобъектив
      (размеры практически одинаковы) Сделайте угол зрения слишком большим, — и разница в размерах объектов будет преувеличена, ну а слишком узкий угол зрения делает относительные размеры объектов практически одинаковыми, и вы теряете ощущение глубины. Сверхширокие углы к тому же ведут к тому, что объекты по краям кадра оказываются растянуты.
      искажение перспективы 
      (при съёмке стандартным/прямолинейным объективом)
      Для сравнения, несмотря на то, что наши глаза создают искажённое широкоугольное изображение, мы реконструируем его в объёмный мысленный образ, в котором искажения отсутствуют.
      2. Различимость и детальность
      Большинство современных цифровых камер имеют 5-20 мегапикселей, что зачастую преподносится как полный провал по сравнению с нашим собственным зрением. Это основано на том факте, что при идеальном зрении человеческий глаз по разрешающей способности эквивалентен 52-мегапиксельной камере (принимая за угол зрения 60°).
      Однако эти подсчёты вводят в заблуждение. Лишь наше центральное зрение может быть идеальным, так что в действительности мы никогда не достигаем такой детальности за один взгляд. По мере удаления от центра наши зрительные способности драматически падают — настолько, что всего на 20° от центра наши глаза различают уже всего одну десятую от исходной детальности. На периферии мы обнаруживаем только крупномасштабный контраст и минимум цветов:

      Принимая это во внимание, можно утверждать, что один взгляд наших глаз способен различать детали всего лишь сравнимые с 5-15 мегапикселями камеры (в зависимости от зрения). Однако наше сознание в действительности не запоминает образы попиксельно; оно записывает памятные детали, цвет и контраст для каждого изображения по-разному.
      В результате, чтобы воссоздать детальный зрительный образ, наши глаза фокусируются на нескольких представляющих интерес предметах, быстро их чередуя. Вот наглядное представление нашего восприятия:
      исходная сцена предметы интереса Конечным результатом является зрительный образ, детальность которого эффективно приоритизируется на основе интереса. Из этого следует важное для фотографов, но часто оставляемое без внимания свойство: даже если снимок максимально использует всю технически возможную детальность камеры, эта детальность не будет иметь особого значения, если сам по себе снимок не содержит ничего запоминающегося.
      К прочим важным отличиям того, как наши глаза различают детали, относятся:
      Асимметрия. Каждый глаз способен воспринимать больше деталей ниже линии зрения, чем выше, а периферийное зрение гораздо более чувствительно по направлению от носа. Камеры снимают изображения абсолютно симметрично.
      Зрение при слабом свете. В условиях очень слабого света, например, лунного или звёздного, наши глаза фактически начинают видеть монохромно. В таких ситуациях наше центральное зрение к тому же становится менее зорким, чем слегка в сторону от центра. Многие астрофотографы в курсе этого и извлекают из этого преимущества, глядя чуть в сторону от неяркой звезды, если хотят разглядеть её невооружённым глазом.
      Малые градации. Различимости малейших деталей зачастую уделяется чрезмерное внимание, однако малые тональные градации тоже важны — и похоже, именно по этой части наши глаза и камеры отличаются сильнее всего. Для камеры увеличенную деталь всегда легче передать на снимке — а вот для наших глаз, хоть это и противоречит интуиции, увеличение детали может сделать её менее видимой. На следующем примере оба изображения содержат текстуру с одинаковым контрастом, однако на изображении справа она не видна, поскольку была увеличена.
      Больше в 16 раз мелкая текстура
      (едва видна)   грубая текстура
      (не видна)  
      3. Чувствительность и динамический диапазон
      Динамический диапазон является одной из характеристик, по которой глаз зачастую рассматривают как имеющий огромное преимущество. Если рассматривать ситуации, в которых наш зрачок расширяется и сужается, адаптируясь к разнице яркостей, тогда да, наши глаза намного превосходят возможности одиночного снимка (и могут иметь диапазон, превышающий 24 f-ступени*). Однако в таких ситуациях наши глаза динамически адаптируются, как это делает видеокамера, так что это, очевидно, нечестное сравнение.
      фокус на фоне фокус на переднем плане зрительный образ  
      Если же вместо этого мы оценим мгновенный динамический диапазон нашего глаза (при неизменной ширине зрачка), то камеры будут выглядеть намного лучше. Аналогию можно получить, глядя на один элемент сцены, дав глазам настроиться и не глядя никуда более. В этом случае как правило говорят, что наши глаза могут воспринимать динамический диапазон порядка 10-14 f-ступеней, что абсолютно перекрывает большинство компактных камер (5-7 ступеней), но на удивление недалеко от возможностей зеркальных камер (8-11 ступеней).
      С другой стороны, динамический диапазон нашего глаза зависит также от яркости и контраста предмета, так что вышесказанное справедливо только при обычном дневном свете. При слабом звёздном свете, например, наши глаза могут достичь гораздо более широкого моментального динамического диапазона.
      Чувствительность. Это ещё одна важная зрительная характеристика, которая описывает способность различать нечёткие или быстродвижущиеся предметы. При ярком свете современные камеры превосходят возможности зрения относительно быстродвижущихся объектов. Это зачастую возможно для камер со светочувствительностью ISO свыше 3200; эквивалент светочувствительности ISO для человеческого глаза при дневном свете считается равным всего лишь 1.
      Впрочем, при слабом свете чувствительность наших глаз существенно возрастает (если дать им не менее получаса на адаптацию). Астрофотографы часто оценивают её диапазоном ISO 500-1000; всё же не настолько высока, как у цифровых камер, но близко. С другой стороны, камеры имеют преимущество в том, что способны посредством длительной выдержки выявлять и ещё более неяркие объекты, тогда как наши глаза не увидят никаких новых подробностей, рассматривая что-нибудь дольше, чем 10-15 секунд.
      Итоги
      Можно возразить, что рассуждения о том, может ли камера превзойти зрение, непоследовательны, поскольку для камер требуется другой стандарт: они нужны для создания реалистично выглядящих отпечатков. Напечатанный снимок не знает, на каких предметах сфокусируется глаз, так что каждая часть кадра должна быть предельно детальна — просто на случай, если она привлечёт внимание. Это в особенности справедливо для больших или рассматриваемых с близкого расстояния отпечатков. Однако можно и возразить, что дать сравнительную оценку возможностям камеры тоже полезно.
      В целом, большинство преимуществ нашей зрительной системы проистекают из того факта, что наше сознание способно разумно интерпретировать информацию, передаваемую глазами, тогда как в случае с камерой всё, что у нас есть, — это результат работы сенсора. Но даже в этом случае современные цифровые камеры справляются на удивление неплохо, а по некоторым визуальным характеристикам даже превосходят наши глаза. По-настоящему выигрывает тот фотограф, который способен разумно собрать несколько снимков — и тем самым превзойти даже изображение, реконструированное сознанием.
      .mbh-notification-box { -moz-border-radius: 3px; -webkit-border-radius: 3px; border-radius: 3px; color: #ffffff; font-family: 'Open Sans', sans-serif; margin-bottom: 25px; padding: 10px 14px 10px 44px; position: relative; width: -moz-fit-content; width: -webkit-fit-content; width: fit-content; } .mbh-notification-box:before { font-family: FontAwesome; font-size: 21px; left: 14px; position: absolute; } .mbh-notice { background-color: #bea474; } .mbh-notice:before { content: "\f0a1"; margin-left: -1px; margin-top:-5px; }
    • Автор: VladOr
      Как они влияют на фотографию?
      Данная глава посвящена вопросу: как размер сенсора цифровой камеры влияет на различные типы фотографии? Выбор размера сенсора аналогичен выбору между плёночными камерами 35 мм, среднего и большого формата — с некоторыми существенными отличиями, присущими цифровым технологиям. Эта тема порождает множество недоразумений, поскольку размеры сенсоров существенно варьируются, и плюс к тому есть много параметров выбора, включая глубину резкости, визуальный шум, дифракцию, стоимость и размер/вес.
      Основные понятия, обсуждаемые в этой статье, можно найти в главе, посвящённой сенсорам цифровых камер.
      Обзор размеров сенсоров
      Существует множество сенсоров разного размера, в зависимости от их использования, ценовой категории и требуемой портативности. Относительные размеры для многих из них показаны ниже:

      Canon 1Ds/1DsMkII/5D и Kodak DCS 14n являются наиболее распространёнными полнокадровыми сенсорами. Такие камеры Canon, как 300D/350D/10D/20D, все используют кроп-фактор 1.6, тогда как в камерах Nikon, таких как D70(s)/D100 используется кроп-фактор 1.5. В диаграмме отсутствует кроп-фактор 1.3, который используется в серии 1D камер Canon.
      Камеры телефонов и другие компактные камеры используют сенсоры в диапазоне от ~1/4" до 2/3". Olympus, Fuji и Kodak объединились для создания стандарта 4/3, который имеет кроп-фактор 2 относительно плёнки 35 мм. Существуют сенсоры среднего формата и даже больше, однако они намного менее распространены и в настоящее время невозможно дороги, в связи с чем мы не рассматриваем их здесь, хотя к ним применимы те же принципы.
      Кроп-фактор и множитель фокусного расстояния
      Кроп-фактором называют отношение диагонали полного кадра (35 мм) к диагонали сенсора. Называют его так, поскольку при использовании 35 мм объектива сенсор по сути обрезает края изображения (в связи со своим уменьшенным размером)

      Угол зрения полного кадра 35 мм
      На первый взгляд можно предположить, что потеря информации об изображении никогда не будет уместна, но в действительности в ней есть свои преимущества. Практически все объективы наиболее резки в центральной части, и по мере приближения к краю деградация качества нарастает. Это означает, что урезанный сенсор по сути теряет части изображения худшего качества, что может оказаться весьма полезным при использовании объективов низкого качества (поскольку у них граничное качество, как правило, наихудшее).
      Полный снимок Центральный фрагмент Угловой фрагмент С другой стороны это означает, что используется намного больший объектив, чем это в действительности необходимо, - что становится особенно заметно, если камеру приходится носить долгое время (см. ниже). В идеале следовало бы использовать практически всё изображение, передаваемое объективом, и объектив должен быть при этом достаточно высокого качества, чтобы изменения резкости от центра к краям были пренебрежимо малы.
      Вдобавок, оптическое качество широкоугольных объективов редко настолько же велико, как у объективов с большими фокусными расстояниями. Поскольку обрезанный сенсор вынужден использовать более широкоугольные объективы для получения того угла обзора, который возможен для сенсора большего размера, это ухудшает качество. Кроме того, сенсоры меньшего размера больше используют центральное поле зрения объектива, так что пределы его разрешающей способности станут более заметны для объективов худшего качества.
      Аналогично, множитель фокусного расстояния относит фокусное расстояние объектива, используемого с сенсором меньшего формата, к фокусному расстоянию объектива с таким же углом зрения на 35 мм, и он равен кроп-фактору. Это означает, что объектив 50 мм, используемый с сенсором, кроп-фактор которого равен 1.6, обеспечит тот же угол зрения,что и объектив 1.6 x 50 = 80 мм для полно кадрового сенсора 35 мм.
      Учтите, что каждый из этих терминов может несколько дезориентировать. Фокусное расстояние объектива в действительности не меняется при использовании его с сенсором другого размера — изменяется исключительно угол зрения. Объектив 50 мм всегда будет объективом 50 мм, вне зависимости от типа сенсора. В то же время «кроп-фактор» может быть неподходящим термином для описания малых сенсоров, поскольку обрезание изображения далеко не всегда имеет место (если используются объективы, разработанные для данного сенсора).
      Размер и вес объектива
      Меньшие сенсоры требуют более лёгких объективов (для эквивалентного угла зрения, диапазона зума, качества сборки и диапазона диафрагм). Это отличие может быть критично для съёмок дикой природы, в походах и поездках, поскольку в них зачастую требуется использовать более тяжёлые объективы или носить оборудование длительные периоды времени. Следующий график иллюстрирует этот тренд на примере выбора типичных телеобъективов Canon для съёмок спорта и дикой природы:

      Подразумевается, что если требуется достичь на 35 мм камере того же приближения, которое достигается объективом 200 мм f/2.8 на камере с кроп-фактором 1.5 (то есть, использовать объектив 300 мм f/2.8), придётся носить в 3.5 раза больший вес! Это если не принимать в расчёт разницу в размерах между ними, которая может быть важна, если не хочется привлекать внимание публики. Вдобавок, более тяжёлые объективы обычно значительно дороже стоят.

      В зеркальных камерах увеличение размера сенсора означает заодно увеличение размера и прозрачности картинки в видоискателе, что может быть особенно полезно при ручной фокусировке. Однако, такая конструкция также будет тяжелее и стоить больше, поскольку требует большего размера пентапризмы (или пентазеркала), чтобы передать свет от объектива к видоискателю и далее на сетчатку вашего глаза.
      Требования к глубине резкости
      При увеличении размера сенсора глубина резкости при заданной диафрагме уменьшится (для предмета съёмки тех же размеров и на том же расстоянии). Происходит это потому, что сенсор большего размера для заполнения кадра потребует либо приблизиться к предмету съёмки, либо использовать большее фокусное расстояние. Сокращение дистанции фокусировки означает сокращение глубины резкости, для компенсации которого потребуется увеличить число диафрагмы (закрыть её сильнее).
      В качестве примера расчёта, если захотеть воспроизвести ту же перспективу и глубину резкости на полнокадровом сенсоре, которые были получены при помощи объектива 10 мм при диафрагме f/11 на камере с кроп-фактором 1.6, понадобилось бы использовать объектив 16 мм и диафрагму порядка f/18. Иначе, если использовать объектив 50 мм f/1.4 на полнокадровом сенсоре, полученная глубина резкости была бы настолько мала, что на камере с кроп-фактором 1.6 для этого потребовалась бы диафрагма 0.9 — для потребительских объективов недостижимая!
      Малая глубина резкости может быть желательна для портретов, поскольку она улучшает размытие фона, тогда как большая глубина резкости желательна для пейзажно-ландшафтной съёмки. Вот почему компактные камеры бьются за получение хорошего размытия фона на портретах, тогда как камеры большого формата бьются за требуемую глубину резкости пейзажей.
      Примите во внимание, что вышеприведенный калькулятор предполагает, что у вас есть объектив для второго сенсора, который может воспроизвести угол зрения первого. Если вы используете один и тот же объектив, требования по диафрагме сохранятся, но вам потребуется приблизиться к объекту (или отдалиться от него). Однако при этом заодно изменится перспектива.
      Влияние дифракции
      Сенсоры большего размера могут использовать меньшие диафрагмы, прежде чем кружок рассеивания станет больше, чем кружок нерезкости (определяется печатным размером и критериями резкости). Происходит это в первую очередь потому, что большие сенсоры не требуют настолько большого увеличения зафиксированного ими изображения для получения аналогичного печатного размера. Например, если использовать (теоретически) цифровой сенсор размером 20x25 см, отпечатки размером 8x10 см вообще не потребуют увеличения, тогда как отпечаток с сенсора 35 мм потребовал бы существенного увеличения.
      Следующий калькулятор может быть использован для оценки дифракционного предела резкости. Учтите, что его результаты справедливы только для визуального контроля изображения на экране в масштабе 100% — то есть, различимость дифракции в отпечатке будет также зависеть от расстояния просмотра и печатного размера. Для получения расчёта по этим параметрам используйте калькулятор, приведенный в главе о дифракционном пределе в фотографии.
      Не забывайте, что усиление влияния дифракции происходит постепенно, так что диафрагмы несколько меньшие или большие полученного значения дифракционного предела не станут внезапно выглядеть лучше или хуже, соответственно. Используя Canon 20D, например, зачастую можно применять f/11 без заметных изменений резкости в фокальной плоскости, но если закрывать диафрагму сильнее, дифракция становится хорошо заметна. Далее, вышеприведенная цифра является всего лишь теоретическим пределом, в действительности значение будет также зависеть от характеристик объектива. Следующая диаграмма показывает размер диска Эйри (теоретического максимума разрешающей способности) для двух диафрагм в матрице, отображающей размер пикселя:
      Разрешение ограничено плотностью пикселей
      (требование малой ГРИП) Разрешение ограничено диском Эйри
      (требование большой ГРИП) Важным следствием этих явлений является то, что дифракционный предел размера пикселя увеличивается для сенсоров большего размера (если требуемая глубина резкости остаётся неизменной). Именно размер пикселя определяет момент, когда размер кружка рассеивания становится ограничивающим фактором общего разрешения — но не плотность пикселей. Далее, дифракционный предел ГРИП является константой для всех размеров сенсоров. Этот фактор может быть критическим при выборе новой камеры для целевого использования, поскольку большее число пикселей необязательно обеспечит прирост разрешающей способности (для определённых требований к глубине резкости). Фактически, увеличение числа пикселей может даже повредить качеству изображения, повысив шумность и сократив динамический диапазон (в следующем разделе).
      Размер пикселя: уровень шума и динамический диапазон
      Сенсоры большего размера обычно имеют пиксели большего размера (хотя это не всегда так), что потенциально означает меньший визуальный шум и больший динамический диапазон. Динамический диапазон описывает диапазон оттенков цветности, которые сенсор в состоянии записать, прежде чем пиксель окажется абсолютно белым, но не ниже уровня, при котором текстура становится неотличима от фонового шума (близко к чёрному). Поскольку пиксели большего размера занимают больший объём — и, следовательно, имеют большую фотонную ёмкость — их динамический диапазон тоже как правило больше.

      Далее, более крупные пиксели получают больший поток фотонов за время заданной экспозиции (при одинаковой диафрагме), так что их светосигнал намного сильнее. Для аналогичного количества фонового шума достигается более высокое соотношение сигнал-шум — и как следствие, более гладкое фото.
      Крупные пиксели
      (часто больший сенсор) Мелкие пиксели
      (часто меньший сенсор) Однако это не всегда так, поскольку уровень фонового шума зависит также от технологии производства сенсора и от того, насколько эффективно камера извлекает тональную информацию из каждого пикселя (не внося дополнительный шум). В остальном вышеописанная тенденция верна. Ещё один аспект, который имеет смысл учитывать, состоит в том, что даже если два сенсора имеют одинаковый видимый шум при просмотре в масштабе 100%, сенсор с большим числом пикселей выдаст более чистый финальный отпечаток. Произойдёт это потому, что на сенсоре с большим числом пикселей шум будет меньше увеличен (для заданного печатного размера), следовательно, это будет более высокочастотный шум, с более мелким зерном.
      Стоимость производства цифрового сенсора
      Стоимость цифрового сенсора драматически повышается по мере увеличения его площади. Это означает, что сенсор удвоенной площади будет стоить гораздо более, чем вдвое дороже, так что вы в действительности платите больше за единицу площади сенсора по мере увеличения его размера.
      Кремниевый диск
      (поделен на маленькие сенсоры) Кремниевый диск
      (поделен на большие сенсоры) Понять это можно, взглянув на процесс производства цифровых сенсоров. Каждый сенсор вырезается из большого листа кремния, называемого подложкой, который может содержать тысячи индивидуальных чипов. Каждый лист невероятно дорог(тысячи долларов), и как следствие, чем меньше чипов можно получить из листа, тем дороже будет каждый из них. Далее, степень отбраковки (слишком много сгоревших пикселей или что-нибудь ещё) нарастает по мере прироста размера сенсора, то есть процент пригодных к использованию сенсоров (выход с листа) падает. Считая эти факторы (количество чипов с листа и доход) самыми важными, считаем стоимость возрастающей пропорционально квадрату площади сенсора (сенсор двойного размера будет стоить вчетверо дороже). В действительности отношение размера к стоимости имеет более сложную форму, но квадратичный расчёт поможет вам оценить, насколько быстро растёт стоимость.
      Это не значит, что сенсоры определённого размера всегда будут невозможно дороги; их стоимость может однажды упасть, но относительная стоимость большого сенсора всегда будет намного больше (за единицу площади) по сравнению с некоторым меньшим размером.
      Прочие соображения
      Некоторые объективы доступны только для определённых размеров сенсоров (в противном случае могут не работать), что тоже может оказаться соображением, если они нужны для вашего стиля фотографии. Одним из примечательных типов объективов является сдвиго-поворотный (tilt/shift), который можно применять для увеличения (или уменьшения) видимой глубины резкости посредством поворота или управления перспективой с помощью сдвига для снижения (или исключения) завала вертикали, вызванного отклонением камеры от линии горизонта (полезно при съёмке архитектуры).
      Итоги: общая детальность изображения и взаимоисключающие факторы
      Глубина резкости для сенсоров больших форматов намного меньше, однако они также позволяют закрыть диафрагму намного сильнее, прежде чем дифракционный предел будет достигнут (для выбранного печатного размера и критериев резкости). Так у какого же из вариантов есть потенциал сделать наиболее детальный снимок? Большие сенсоры (и соответствующие большие количества пикселей) без сомнения создают более детальные изображения, если вы можете позволить себе пожертвовать глубиной резкости. С другой стороны, если вы хотите сохранить определённую глубину резкости, большие размеры сенсоров необязательно имеют преимущество в разрешающей способности. Далее, дифракционный предел глубины резкости одинаков для всех размеров сенсоров. Другими словами, если требуется использовать предельно закрытую диафрагму до проявления эффекта дифракции, все размеры сенсоров создадут одинаковую глубину резкости — несмотря на то, что дифракционный предел числа диафрагмы будет различным.
      Техническое примечание: подразумевается, что размер пикселя сравним с размером дифракционного кружка рассеивания (диска Эйри) для каждого из сенсоров, и что используются объективы сравнимого качества. Более того, поворотные объективы гораздо больше распространены для камер больших форматов — позволяя изменить угол фокальной плоскости и, как следствие, увеличить видимую глубину резкости.

      Ещё одно важное следствие таково: если решающим параметром оказывается глубина резкости, требуемая длительность экспозиции увеличивается вместе с размером сенсора при одинаковой чувствительности ISO. Этот фактор, пожалуй, максимально влияет на макросъёмку и ночную фотографию, поскольку для каждой из них может потребоваться большая глубина резкости и разумная длительность экспозиции. Заметьте, что если снимок может быть сделан с рук на меньшем формате, необязательно то же самое можно снять с рук на большем.
      С другой стороны, длительности выдержки необязательно вырастут настолько сильно, как может показаться на первый взгляд, поскольку большие сенсоры обычно меньше шумят (и, соответственно, могут позволить использовать большую чувствительность ISO с сохранением аналогичного уровня визуального шума).
      В идеале, уровень визуального шума (на данном печатном размере) обычно падает при увеличении размера сенсора цифровой камеры (вне зависимости от размера пикселя).
      Вне зависимости от размера пикселя, большие сенсоры неизбежно имеют большую площадь светосборника. Теоретически сенсор большого размера с маленькими пикселями по-прежнему будет показывать меньше визуального шума (для выбранного печатного размера), чем меньший сенсор с большими пикселями (и значительно меньшим числом пикселей, как следствие), поскольку шум камеры с высокой разрешающей способностью подвергается меньшему увеличению, даже если при просмотре в масштабе 100% на экране компьютера снимок выглядит более зашумленным. Иначе, можно усреднить смежные пиксели сенсора с большим числом пикселей (тем самым уменьшив случайный шум), достигнув при этом разрешения сенсора с меньшим числом пикселей. Именно поэтому изображения, уменьшенные для публикации на сайтах и мелкоразмерных отпечатков, выглядят настолько бесшумно.
      Технические примечания: все эти утверждения предполагают, что разница в эффективности микролинз и межпиксельном расстоянии для различных размеров сенсоров несущественна. Если межпиксельное расстояние остаётся неизменным (в силу наличия цепей считывания и прочей схемотехники чипа), более высокая плотность пикселей означает уменьшение площади светосборника, если микролинзы не смогут компенсировать эти потери. Вдобавок, здесь игнорируется влияние структурного и линейчатого шума, который может значительно отличаться между моделями камер и схемотехникой считывания сенсора.
      В целом: сенсоры больших размеров обычно предоставляют больше контроля и художественной гибкости, но за счёт увеличения размера и веса объективов, а также общей стоимости. Такая гибкость позволяет использовать меньшую глубину резкости, чем это возможно для меньшего сенсора (если это требуется), и при этом позволяет достичь сравнимой глубины резкости при использовании меньшего отверстия диафрагмы и более высокой чувствительности ISO (или штатива).